您所在的位置: 首页滚动 > >  正文

二重积分轮换对称性对积分区域什么要求_二重积分轮换对称性

2023-03-09 05:11:50 来源:互联网


(相关资料图)

1、你说的那几种情况都不是轮换对称性,首先所谓轮换对称性就是,如果把f(x,y)中的x换成y,y换成x后,f(x,y)的形式没有变化,就说f(x,y)具有轮换对称性。

2、例如x^2+y^2有轮换对称性,而2x+3y没有轮换对称性(因为换完后是2y+3x,和原来的不一样)。

3、下面说明轮换对称性在二重积分中的应用,我们知道二重积分的积分区域的边界可以用方程f(x,y)=0表示,如果这里的f(x,y)具有轮换对称性,那么被积函数中的x和y互换后积分结果不变。

4、例如∫∫x^2dxdy,积分区域为圆周x^2+y^2=1,由于轮换对称性可知∫∫x^2dxdy=∫∫y^2dxdy(这就是把被积函数中的x换成了y),因此积分=(1/2)∫∫2x^2dxdy=(1/2)∫∫(x^2+y^2)dxdy,再用极坐标计算就简单多了。

5、有不明白的地方欢迎追问。

以上就是【二重积分轮换对称性对积分区域什么要求,二重积分轮换对称性】相关内容。

标签:

上一篇:
下一篇: